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On the Representation of Quantum Mechanics on
a Classical Sample Space

Werner Stulpe1
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Under the common viewpoint of statistical maps, the concept of observables in
quantum mechanics and in classical probability theory are discussed and
compared. It is shown that, by means of injective statistical maps, quantum
mechanics can to a certain extent be reformulated in classical terms. Some
characteristic examples are considered.

1. QUANTUM MECHANICS AND CLASSICAL PROBABILITY
THEORY

Hilbert-space quantum mechanics is based on the statistical duality

^ 7s(*), @s(*) & consisting of the space of the self-adjoint trace-class operators

and the space of the bounded self-adjoint operators in a nontrivial, complex
separable Hilbert space *, where the duality is given by the trace functional

according to ^ V, A & : 5 tr V A. The space 7s(*) is generated by the convex

set K (*) of all density operators; @s(*) is generated by the order-unit interval

[0, 1], which is also a convex set. A density operator W P K (*) describes

a quantum state, i.e., a statistical ensemble, and an operator A P [0, 1] an
effect, i.e., a class of statistically equivalent yes±no experiments; the number

tr W A P [0, 1] is interpreted to be the probability for the outcome `yes’ of

the effect A in a state W.
Let M be a nonempty set, (M, J ) a measurable space, and K (M, J ) the

convex set of all probability measures on J . An affine map T: K(*) ® K (M,

J ) is called a statistical map. Such a map describes a quantum observable
with value space M where TW is the probability distribution of that observable
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in the state W. It is well known and not hard to prove that T can be represented

according to

(TW )(B) 5 tr WF(B) 5 : P F
W(B) (1)

where W P K (*), B P J , and F: J ® [0, 1] is a uniquely determined
normalized POV, respectively, effect-valued measure. Conversely, every such

measure F defines a statistical map. We call F an observable on (M, J ) and

P F
W its probability distribution in the state W.

The observables on a fixed measurable space (M, J ) form a convex set.

The more common projection-valued observables, i.e., the normalized PV

measures on (M, J ), are extreme points of this set; however, in general there
are still other extreme points. For an observable F on (R, J (R)), where J (R)

denotes the Borel sets of R, the expectation value in a state W is given by

^ F & W : 5 # j PF
W(d j ) 5 # j tr WF(d j )

5 tr 1 W # j F(d j ) 2 (2)

5 tr WA

provided that at least the first integral exists. We have even assumed that the

integral * idR dF 5 : A P @s(*) exists in the weak sense; however, F need

not be a PV measure. In the sense of equation (2), every bounded, self-

adjoint operator A P @s(*) can be interpreted as an observable.

Classical probability theory is considered here to be based on the statisti-
cal duality ^ }R( V , S ), ^R( V , S ) & consisting of the space of the bounded

signed measures and the space of the bounded measurable functions on a

nontrivial measurable space ( V , S ), where the duality is given by the integral

according to ^ v, f & : 5 * f dv and V is interpreted as a classical sample space

with the elements of S as events. In contrast to the statistical duality of

quantum mechanics, ^R( V , S ) is in general a proper subspace of the dual
Banach space }R( V , S )8. The space }R( V , S ) is generated by the convex

set K ( V , S ) of all probability measures on S , ^R( V , S ) is generated by the

order-unit interval [0, x V ], where x V ( v ) : 5 1 for all v P V . The probability

for the outcome `yes’ of an effect f P [0, x V ] in a classical ensemble m P
K ( V , S ) is * f d m ; the particular effects given by the characteristic functions

x A , A P S , correspond to the events.
Analogously to the quantum case, we call an affine map T: K ( V , S )

ª K (M, J ) a statistical map. We call such a statistical map regular if T 8
^R(M, J ) # ^R( V , S ), where T 8: }R(M, J )8 ª }R( V , S )8 is the adjoint

of the unique extension of T to a (bounded) linear map from }R( V , S ) into
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}R(M, J ). It is shown in Stulpe (1986) and Bugajski et al. (1996) that a

regular statistical map T can be represented according to

(T m )(B) 5 # k ( v , B) m (d v ) 5 : P k
m (B) (3)

where m P K ( V , S ), B P J , and k: V 3 J ® [0, 1] is a Markov kernel,

i.e., k (., B) is a measurable function for each B P J , and k ( v ,.) P K (M,

J ) for each v P V . Conversely, every such kernel defines a regular statistical
map. We interpret the Markov kernels on V 3 J as the classical observables

with value space M; in this context we call a kernel k a fuzzy random variable
and P k

m its probability distribution in the statistical ensemble m .

Equation (3) is the analog of equation (1), and the Markov kernels are

the classical analogs of the POV measures. On the one hand, B j k (., B)

is in fact an effect-valued measure; on the other hand, k ( v , .) is the probability
distribution of the observable k in the pure ensemble m 5 d v , where d v denotes

the Dirac measure corresponding to v P V . The fact that the measuring values

of k may disperse even in an ensemble of systems in the same state v
explains the name fuzzy random variable; note that the measuring values of

the observable k lie in M, whereas the values of the map k are numbers of

[0, 1].
Every standard random variable X: V ª M gives rise to a Markov kernel

taking only the values 0 and 1 according to

k X( v , B) : 5 x X
2 1

(B)( v ) 5 x B(X ( v )) 5 d X( v )(B) 5 P X
d v (B) (4)

where P X
d v is the probability distribution of X in the pure ensemble d v . If the

s -algebra J contains all one-point subsets {x} of M, different random vari-

ables yield different Markov kernels, i.e., k X1 5 k X2 implies X1 5 X2. Hence,

the usual random variables can be understood as particular fuzzy random

variables. It is proved in Stulpe (1986) and Bugajski et al. (1996) that

under some slight additional assumptions equation (4) defines a one±one

correspondence between the random variables X: V ª M and the Markov
kernels k0: V 3 J ª [0, 1] taking only the values 0 and 1 and that, moreover,

these kernels k0 are just the extreme points of the convex set of all Markov

kernels k: V 3 J ª [0, 1]. Thus, the standard random variables can be

viewed as the extreme points of the convex set of all fuzzy random variables

with the same outcome space.

2. CLASSICAL REPRESENTATIONS

We call an injective statistical map T: K(*) ª K ( V , S ) a classical repre-
sentation of quantum mechanics on ( V , S ). A statistical map T: K(*) ª
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K ( V , S ) is injective if and only if the observable F on ( V , S ) that corresponds

to T according to (1) separates the states, i.e., if and only if for any two

W1, W2 P K (*), P F
W1 5 P F

W2 implies W1 5 W2. Such observables are called

statistically complete or informationally complete (e.g., Ali and PrugovecÏ ki,

1977a,b). The remarkable fact that statistically complete observables, respec-

tively, classical representations of quantum mechanics, do exist can be con-

cluded from the norm-separability of Hilbert space, as we are going to show.

According to the Banach±Alaoglu theorem, the closed unit ball [ 2 1, 1]

of @s(*) 5 7s(*)8 is 7s(*)-weakly compact. Furthermore, because of the

norm-separability of 7s(*), which is a consequence of the norm-separability

of *, the 7s(*)-weak topology is metrizable on [ 2 1, 1]. Hence, as a metriza-

ble compact space, [ 2 1, 1] is 7s(*)-weakly separable; likewise, the order-

unit interval [0, 1] is 7s(*)-weakly separable. Now take a sequence AÄ n P
[0, 1] being 7s(*)-weakly dense in [0, 1] and define a further sequence by

A1 : 5 1 2 o
`

j 5 1

1

2j AÄ
j

An : 5
1

2n 2 1 AÄ n 2 1 for n $ 2

Then An P [0, 1] for all n P N and S `
n 5 1 An 5 1 hold, where the sum is

even norm-convergent, and the linear hull of all An is 7s(*)-weakly dense

in @s(*). Hence, according to

TW : 5 (tr WA1, tr WA2, . . .)

a classical representation T on (N, J (N)) is defined, where W P K (*) and

the probability vector TW is considered as a probability measure on the power

set J (N) of the discrete sample space N. The corresponding statistically

complete observable F on (N, J (N)) is given by

F (B) 5 o
j P B

Aj

where B P J (N).

Now let T be an arbitrary classical representation on ( V , S ), respectively,

its unique extension to a linear map from 7s(*) into }R( V , S ), and let T 8:
}R( V , S )8 ª @s(*) be the adjoint of T. From the fact that T 8 ^R( V , S ) is

a 7s(*)-dense subspace of @s(*), the validity of the following theorem

follows (Singer and Stulpe, 1992).
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Theorem. For every bounded, self-adjoint operator A P @s(*), every

e . 0, and any finitely many states W1, . . . , Wm P K (*) there exists a

function f P ^R( V , S ) such that

Z tr WiA 2 # f d m i Z , e

holds, where m i : 5 TWi 5 P F
Wi (i 5 1, . . . , m).

This result signifies a far-reaching reformulation of the statistical scheme
of quantum mechanics in terms of the classical sample space V . Namely,

probabilities and expectation values which appear in reality as relative fre-

quencies and mean values can be calculated on the basis of Hilbert space

and in principle also on the basis of V , the latter involving real-valued

standard random variables f.
Quantum dynamics can also be reformulated classically. The time devel-

opment of a state W P K (*) is given by some Hamiltonian H according to

t j W t : 5 t tW : 5 e 2 iHtWeiHt (5)

where t P R and t t is a strongly continuous one-parameter group of automor-

phisms of the state space 7s(*). Introducing the infinitesimal generator Z
of t t , we find that (5) satisfies

WÇ t 5 ZWt (6)

provided that the initial state W belongs to the domain D (Z ) of Z [for an

explicit characterization of D (Z ) and Z, see Davies (1976); we remark that

K (*) ù D (Z ) is dense in K (*)]. Using a classical representation T on

( V , S ), we can write (5) in the equivalent form

t j m t : 5 TW t 5 T t tT
2 1 m 5 d t m (7)

where T 2 1 is defined on the range T7s(*) of T, m : 5 TW, and d t 5 T t tT
2 1.

Note that in general T7s(*) is not a closed subspace of }R ( V , S ) and that

the operators T 2 1 and d t need not be bounded; however, (7) is a solution of

the equation

m Ç t 5 L m t (8)

where the derivative is taken in the total-variation norm of }R ( V , S ) and

L : 5 TZT 2 1. Equation (8) is the reformulation of the von Neumann equation
(6) in terms of the sample space V (for details, see Stulpe, 1996).

In the case of a finite-dimensional Hilbert space our results can be

sharpened considerably. If n : 5 dim * , ` , then 7s(*) 5 @s(*) and dim

@s(*) 5 n 2 5 : N. It is proved in Busch et al. (1993) that there exist linearly
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independent operators A1, . . . , AN P @s(*) fulfilling Aj $ 0 and ( N
j 5 1 Aj 5

1. Hence, according to

TW : 5 (tr WA1, . . . , tr WAN) (9)

a classical representation T on ( V , J ( V )) is defined where W P K (*) and

the probability vector TW is considered as a probability measure on the power

set J ( V ) of the finite discrete sample space V : 5 {1, . . . , N }. Although T
does obviously not map K (*) onto K ( V , J ( V )), the linear extension of T
is bijective, and so is T 8: ^R( V , J ( V )) ® @s(*). Every classical representa-

tion of finite-dimensional quantum mechanics with a bijective linear extension

is of the form (9), where A1, . . . , AN is a basis of @s(*) as specified above.

In particular, for every A P @s(*) there exists a uniquely determined function

a P ^R( V , J ( V )), namely a : 5 (T 8) 2 1 A, such that for all W P K (*)

tr WA 5 o
N

j 5 1

pjaj

holds, where pj are the components of the probability vector p : 5 TW and

aj are the values of the discrete standard random variable a.
A classical reformulation of finite-dimensional quantum mechanics

related to ours was given by Coecke (1995). For the general case, Beltrametti

and Bugajski (1995a, b) presented a classical reformulation that is based on
the representation of quantum observables, respectively, POV measures by

fuzzy random variables, in contrast to ours, which is based on the representa-

tion of quantum states by probability measures. Namely, if V is supposed to

be the set of all pure states of K (*), equipped with some suitable topology

and the corresponding Borel structure J ( V ), then an injective affine map

from the observables F on (M, J ) into the fuzzy random variables k: V 3
J ® [0, 1] is defined by

k (P c , B) : 5 tr P c F(B) 5 ^ c | F (B) c &

where P c : 5 | c & ^ c | , c P *, | c | 5 1, and B P J .

3. SOME EXAMPLES

First, for spinless particles moving in one spatial direction, we consider

classical representations on phase space. Let u P * : 5 L 2
C (R, dx) be a

function of norm one and define uqp (x) : 5 e ipxu (x 2 q) for q, p P R. It is

well known that a covariant joint position± momentum observable F on the

phase space R2 is defined by the weak integral

F (B) : 5
1

2 p # B

| uqp & ^ uqp | dq dp
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where B P J (R2) is a Borel set (see, e.g., Davies, 1976); for a suitable

choice of u, F is statistically complete (Ali and PrugovecÏ ki, 1977a, b). The

corresponding classical representation T on (R2, J (R2)) can be replaced by
the map TÃassigning to each W P K (*) the (continuous) probability density

r of TW 5 P F
W, r (q, p) : 5 (1/2 p ) ^ uqp | Wuqp & . In particular, equation (8) can

be rewritten as

r Ç t 5 LÃr t

where the derivative is taken in the L 1-norm and the operator LÃis related to the

classical Liouville operator 2 {H,.} [e.g., PrugovecÏ ki (1984); for a rigorous

discussion of the harmonic oscillator in this context, see Stulpe (1996)].

Our second example concerns continuous classical representations for

spin-1/2 systems. Let * : 5 C2 and n ? S be the operator of spin in direction

n P R3, |n| 5 1, such that

n ? S f 6 n 5
1

2
n ? s f 6 n 5 6

1

2
f 6 n

holds, where | f n| 5 1. Taking account of | f n & ^ f n | 5 1±2 (1 1 n ? s ), it follows

that an observable F on the sphere S 2 is defined by

F (B) : 5
1

2 p # B

| f n & ^ f n | k (dn)

where B P J (S 2) is a Borel set and k the rotationally invariant measure on

S 2 normalized to its area; obviously, F is a statistically complete covariant joint
spin observable (e.g., Schroeck, 1982). Again, the corresponding classical

representation can be characterized by a map TÃassigning to each W P K (*)

a (continuous) probability density r . The adjoint of TÃ, TÃ8: L `
R (S 2, k ) ®

@s(*), is explicitly given by

TÃ8f 5
1

2 p # f (n) | f n & ^ f n | k (dn) (10)

Since TÃis injective and @s(*) finite-dimensional, TÃ8 is surjective. Hence,

we have proved that every A P @s(*) can be represented according to (10).

Finally, we consider discrete classical representations for spin-1/2 sys-

tems. Let n1, n2, n3, n4 P R3 be four unit vectors with directions determining

the vertices of a regular tetrahedron and define Aj : 5 1±2 | f nj & ^ f nj | 5 1±4(1 1 nj

? s ). From ( 4
j 5 1 nj 5 0 we obtain ( 4

j 5 1 Aj 5 1; hence, the positive operators
A1, A2, A3, A4 constitute a discrete observable F. The probability distribution

of F in the states f n1 and f 2 n1, for instance, is given by the probability

vectors (1±2 , 1±6,
1±6,

1±6) and (0, 1±3,
1±3,

1±3), respectively; in particular, F is a statistically

complete discrete joint spin observable. The corresponding classical represen-
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tation T is, together with those obtained by orthogonal transformation of the

directions nj , distinguished under all classical representations of the form (9)

with
N 5 4 since the image TK(*) is a three-dimensional Euclidean ball inside

of the tetrahedron of all probability vectors of R4, centered at (1±4,
1±4,

1±4,
1±4) and

being tangent to that tetrahedron.
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